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1. INTRODUCTION

Statistical Energy Analysis (SEA) predicts random vibrations and vibration
energy flow in built-up structures. Experimental SEA is a set of techniques for
identifying SEA parameters [1]. The results aid transmission path analysis,
identification of sources and confirmation and updating of predictive SEA
models. The approach, probably first proposed by Woodhouse [2], has recently
acquired greatly increased interest as manifest in numerous conference
contributions, journal papers [3, 4], doctoral thesises [5, 6] and commercial
software. It is believed the method may have many industrial applications,
especially for vehicles.

Experimental SEA is most often based on the Power Injection Method (PIM)
[7]. Thus, for a number of locations in a substructure, a force is applied, the
input power measured and the kinetic energy estimated in each substructure. As
in predictive SEA, it is assumed that dissipation powers and coupling powers are
proportional to vibration energy. Upon this, the measured total input power to
one substructure is related to dissipation and coupling powers in the entire
structure. The scheme is repeated, applying force to the other substructures in
turn; eventually the SEA parameters can be determined from a linear system of
equations.

An advance by De Langhe suggests, for each excitation, dividing both
response measurements and input power by the square of the applied force [5].
The resulting expression for the conservation of energy is equal to the one
applying, if all forces have unit amplitude. One advantage is that the stability of
the relation between input power and kinetic energy is assured (crucial when the
measurements are made over several days or weeks). Another is that some noise
reduction results when transfer functions, instead of spectral powers, are
measured.

The PIM requires that vibration energies are estimated from measured
response variables. For non-homogenous structures this is not a trivial problem.
To handle it Lalor introduced the “‘equivalent mass” [1, 8]. This is a substructure
property which when multiplied by the mean square velocity gives the vibration
energy. Lalor showed that for weak coupling, the equivalent mass can be
estimated in frequency bands from comparisons of PIM measurements and
transient decay measurements. Hermans revealed that if experimental SEA is
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used for response prediction, the actual value of the equivalent mass affects only
the scaling of the equations, not the predicted values of response [9]. However, it
must be emphasised, the equivalent mass used in the PIM must be a property (as
a function of frequency) of the substructure. If it has one value when the
substructure is directly driven and another when it is indirectly driven, e.g., if the
coupling discriminates some of the modes, the approach fails, imposing a severe
limitation on experimental SEA.

Unfortunately experimental SEA equations are sometimes badly conditioned
and occasionally results are not even physically correct. It appears as if weak
coupling, many resonances and modal overlaps that are of the order of unity or
greater favour the PIM [6]. The same criteria are believed to apply for predictive
SEA [10]. Often poor results are attributed to the combination of inevitable
measurement errors and badly scaled matrices. However, arguably, results can
be disappointing when the SEA equations are invalid—because of strong
coupling, non-diffuse fields, too large or low damping, low mode count, non-
resonant vibrations, etc. Yet there is no quantitative knowledge of when SEA
applies but it is known that there are limitations. Thus, since the PIM is based
on the SEA assumption of coupling powers being proportional to vibration
energy, one can not expect that experimental SEA is a suitable method unless
predictive SEA applies.

Langley derives exact equations relating input power to variables proportional
to kinetic energy [11]. Though not identical to the SEA equations, they are
approximately equal for resonant vibrations and weak coupling. (It is not yet
known whether indirect couplings are ultimately negligible for weak coupling.)
To arrive at the weak coupling result, Langley says that coupling is weak when
the Green function of a substructure is, within the required accuracy, unaltered
when the substructure is connected to the rest of the structure.

Langley’s equations are very general based only on the assumptions of linear
vibrations, rain on the roof excitation and uniform density in each substructure.
In addition but only to demonstrate their similarity with SEA, weak conservative
couplings and resonant motion are assumed. In what follows Langley’s
formulation is developed for non-uniform systems assuming that an effective
density can be defined as a substructure property, independent of excitation.

It is proposed that Langley’s formulation be used as a basis for experimental
SEA. The advantages are: it gives symmetric equations—reducing the
measurement effort by almost a factor of two; it is based on transfer function
measurements; it gives non-dimensional equations. Most important, the
equations are less restrictive than the PIM.

2. ENERGY-INPUT POWER RELATIONSHIP

Langley derives equations for the conservation of vibration energy in
structures excited by random, rain-on-the-roof, forces [11]. Linear theory and
harmonic motion of the form ¢/’ are assumed, without further limitation, the
response of the coupled system can be expressed in the form
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Vi(Xa C()) = ZJ Gij(Xa y>w)1:j(y’ w) dy’ (1)

IR

where v; is the vibration velocity in subsystem i, F; is the applied force in
subsystem j, V; is the “volume” of subsystem j and the Green function
G;(x, y, ) represents the response at location x on subsystem i to a harmonic
point load situated at location y on subsystem j. It follows from reciprocity that

Gy(x,y, 0) = Gj(y, X, 0). (2)

The frequency averaged kinetic energy in element i is given by

T, )3 J, ] 1, poGiey or6utsne

x F(y, ) Fi(z, ) dx dy dz dw (3)

where p is the “density” of subsystem i, Q is the frequency band and F* is the
complex conjugate of F.

Assuming rain on the roof excitation, the applied forces are statistically
independent and delta correlated in space. Thus, the cross-spectrum, Sy, of F;
and Fj has the form

Sik(y, 2, 0) = 0;0(y — 2)o. (4)

This also incorporates the assumption that the cross-spectrum is independent of
w over the frequency band . Upon these assumptions, the statistical
expectations of the frequency averaged kinetic energies in the subsystems can be
calculated [11]. The result is conveniently expressed in matrix form,

T = Mo, (5)

where the vector T contains the frequency averaged kinetic energies of the
subsystem and the entries of M are given by

Mij:LJJ J pilGyi(x,y, »)” dx dy do. (6)
2QJo v )y,

By similar calculations, the frequency averages of the input powers are given
by

P =qq, (7)

where the diagonal matrix q has the entries

gi = éRe (L) JV,- Gi(x, x, w) dx dw) . (8)

From equations (5) and (7), the relation between frequency averaged kinetic
energies and input powers is
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T =Mq 'P. 9)

To further simplify this, Langley considers subsystems that have constant
density, however, simplification may be found for more general systems. Thus,
an average, or effective, density is defined for each element and for each
excitation. These effective densities are collected in the matrix R with entries

1 _
Ri=s| | | piGixy.o) axdy o/, (10)
elvly
where
— 1
Mi/:—J J J |Gl»,»(x,y,a))|2 dx dy do. (11)

Now it is assumed that the effective density is independent of which
substructure is excited. This is valid when either the density is uniform within
each subsystem or the form of the vibrations, the relative amplitudes of the
modes or of the vibration waves, is independent of excitation. The first
assumption is Langley’s, the latter is in accordance with the SEA assumptions of
equipartition of modal energies or of diffuse wave fields within each subsystem.
Consequently, in mathematical terms, it is assumed that

Rjj = Ry, vj. (12)
Upon this basis equation (9) may be written
T=rMq 'P, (13)

where the entries of the symmetric and positive matrix M are given in equation
(11) and the entries of the positive and diagonal matrix r are R;;, equation (10).

Finally, to arrive at a symmetric equation similar to the one used in SEA,
variables E are defined

E=mr!q'T, (14)
and upon inserting this definition into equation (13) this can be inverted to yield
CE =P, (15)

where
C=(nqg 'Mq )" = (1/m)qM 'q. (16)

C is a non-dimensional symmetric matrix. Moreover, for conservative coupling it
can be written as the governing matrix in SEA—in terms of dissipation and
coupling loss factors [11].

Following Lyon and DeJong [12], it is proposed here that the elements of the
vector E be termed ‘“‘vibration power potentials”, or, when the context is given,
“potentials™.
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Langley’s definition of weak coupling is that the Green function G; for the
coupled substructure is, within the accuracy required, equal to the one for the
uncoupled substructure [11]. For weak coupling, defined in this manner, and for
a frequency band containing resonances, the potentials E are

E~2n'T, (17)

where the diagonal matrix n has the entries n,—the modal densities (modes per
rad/s) in the substructures. Consequently, for weak coupling and resonant
vibrations, E contains the total vibration energies divided by the modal densities,
i.e., the modal energies, sometimes referred to as “modal power potential” [12].
These are the variables most often used in SEA.

The derivation differs from Langley’s in two respects. First, in not being
restricted to systems with uniform density but applying to all systems for which
effective densities can be defined. Second, in not being for frequency bands but
for frequency band averages. Consequently, the matrix C is non-dimensional and
the matrices q and M are frequency averages. For high frequencies and large
substructures, these can reach asymptotic values that are quite independent of
bandwidth of the analysis. Possibly, upon an ergodic assumption, their estimated
values in frequency bands may be equal to their ensemble average values, this
however, is beyond the scope of the present investigation.

3. EXPERIMENTAL SEA

It is proposed that equation (15) be taken as the basis for experimental
investigation of structural (and acoustic) motion in built-up structures. The
matrix C is defined in equation (16) by the matrices ¢ and M which are
determined by the structure’s Green function. In an experimental procedure
this function is estimated by measured Frequency Response Functions (FRFs).
Thus, the input mobilities and the square magnitude of transfer mobilities are
measured:

I/l'(xn, CL)) . 2

Vi(xn,w)
Fi(xp, 0)’

Yi(x,, o) =
ban- ) F o)

H?I-(Xn, VYms (U) =

, (18)

where v;(x,, w) is the velocity in substructure i at observation point x, and
F;(ym, w) 1s the applied force in substructure ;j at position y,,. The entries of the
matrix g, equation (8), are estimated by

»—ERe zN:lJ Yi(xp, ) do (19)
ql_ N nz] Q o 1 ns 9

and, similarly, those of the symmetric matrix M, equation (11), are estimated by

M; = V Vi Z ZZQJ H2 (Xs V> @) de, (20)

n 1 m=

where V; is the “volume” of element i. From the previous section it is clear that
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q and M are independent entities, so there is no requirement that the same
points be used for the approximate evaluation of the integrals, while perhaps this
is most favourable. The number of sampling points required to obtain
convergence of the integrals depends on the structure and frequency. Possibly,
when SEA applies and there are many resonant modes within the frequency
band all having roughly the same amplitude, the averages converge rapidly and
only a few (say five to ten?) points in each substructure are needed. In other
situations much more effort may be required.

When the matrices q and M have been estimated with sufficient accuracy, the
matrix C can be calculated by equation (16). Equation (15) can then be used for
calculations of the potentials E, if the operating forces can be approximated by
rain on the roof. If it can be assumed that couplings are non-dissipative, and
indirect couplings are negligible, the results can be used to find the coupling
powers in a structure.

3.1. EQUIVALENT MASS AND EFFECTIVE DENSITY

To find the kinetic energies of the substructures, the effective densities defined
in equation (10) are needed. When SEA applies, and the effective densities are
independent of excitation, these can be found by Lalor’s method for the
equivalent mass [1, 8].

In reference [1] the equivalent mass, M,,, is defined by

(Erot)l' =T;+U; = Meq‘i<V,'2>s (21)

where T; is the kinetic energy in element i, U, is the strain energy, ( ) denotes
spatial averaging and where all quantities are implicit time averages. In reference
[1] it is, implicitly, assumed that equation (21) is equally valid when the element
is directly and indirectly excited. This assumption is similar to the one in
equation (12). Now, assuming that equation (12) is valid, it follows from
equation (10) that 7;= R;;V,(v?)/2. Upon this, if it is also assumed that the strain
energy is on average equal to the kinetic energy, it follows that

M,y =2V Ry, (22)

so that estimates of M,,, based on reverberation time and input power
measurements [1], can be used to determine the effective density.

The effective densities can also be estimated from the measured response using
equation (10). Then, a part of the total mass in the substructure is assigned to
each response point x, [6, 13, 14]. For complicated structures this is non-trivial.
However, if the kinetic energy is dominated by measurable out-of-plane motion
and if great care is taken and a sufficient number of response points are used,
the results should be reasonable. Thus, the entries of the matrix R are estimated
from

~

Vi R & 1 —
R = ZZEJQMM Hfj(x,,,ym,a)) do/Mj, (23)

n=1 m=1

=
<
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where the estimate of Mj; is defined in equation (20) and m;, is the mass assigned
to response point x,, in substructure i.

There is no extra measurement effort required for evaluating R—it is found
by “guessing” the m;, and performing some computer calculations. It is believed
that even if the results of equation (23) are not reliable for estimating effective
densities they may still be useful for verifying, or otherwise, the assumption (12)
since if it holds, e.g., if there is modal equipartition or a diffuse wave field, it
should also hold for a sample of response points. Thus, it is proposed that R
should always be calculated to check that effective densities can be defined for
the substructures.

3.2. RESPONSE CALCULATIONS

If effective densities can be defined, then their actual values are not needed for
response calculations. From the definitions of the vibration potentials E, (14),
and of the effective densities, (10) and (12)

-1
Ei=nq 'ry'Ti = i [ J vi(x, o)|* dx do. (24)
2Q Jolv,

Consequently, when the “volume” of the substructure, the frequency and spatial
averaged input mobility, ¢; and the potential E; are known, the mean square
velocity of the substructure can be found. Similarly, from measurements of the
mean square velocities, and the non dimensional matrix C, the operating input
powers can be found using equation (15). If indirect couplings are negligible,
measurements of C and of the operating input powers can be used to determine
the important paths of transmission in the investigated structure. Finally, if
coupling is weak according to Langley’s definition [11], equation (17) holds and
the proposed formulation is equal to an SEA formulation, so that the

measurements can be used for updating predictive SEA models.

In summary, if equation (12) is valid then many of the objectives for
experimental SEA can be met with the proposed formulation, even if the values
of the effective densities are not known. The assumption (12) is trivially true for
uniform systems whereas for non-uniform systems it can be validated by
equation (23).

4. CONCLUSIONS

The energy—input power relations previously derived by Langley [11] are
developed for application to inhomogenous structures. This application is valid
provided that effective densities can be defined as substructure properties,
relating a substructure’s mean square vibration velocity to its kinetic energy. It
may be a function of frequency but must not depend on which substructure is
excited. Measurement procedures for validating this assumption are presented.

It is proposed that Langley’s energy—input power relations be used for
experimental investigations of vibrations in built-up structures. Compared to
procedures commonly applied in experimental SEA the advantages are: (1) itis a
symmetric formulation; (2) the energy—input power relations are non-
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dimensional; (3) it is based on FRFs; (4) it is derived only upon the assumptions
of linear equations of motion, the existence of effective densities and stochastic
excitation.

Statistical Energy Analysis is built on a number of assumptions. The validity
of these and the criteria by which they can be assessed are still open to
discussion [10]. In contrast to this, for homogenous structures, the energy—input
power relations in equation (15) are based on first principles. Moreover, this
work demonstrates that these relations are formulated in terms of directly
measurable quantities. In situations where SEA should provide good answers
equation (15) is equal to the SEA equations for energy conservation [11].
However, the applicability of equation (15) is much wider: consequently, these
equations form a sound and versatile basis for investigating vibrations in a built-
up structure.
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